On formality and combinatorial formality

Paul Mücksch¹ (joint work with Tilman Möller² and Gerhard Röhrle²)

¹ Kyushu University, Fukuoka, Japan; ² Ruhr-University Bochum, Germany

Motiva	

Theorem [Falk, Randell 1987] If \mathcal{A} is a hyperplane arrangement in \mathbb{C}^{ℓ} with complement $M(\mathcal{A}) = \mathbb{C}^{\ell} \setminus \bigcup_{H \in \mathcal{A}} H$ a $K(\pi, 1)$ space, then \mathcal{A} is formal.

Theorem [Yuzvinsky 1993] If \mathcal{A} is free, then \mathcal{A} is formal.

Remark: Yuzvinsky also demonstrated that formality is not combinatorial, i.e. in general it does not solely depend on the intersection lattice $L(\mathcal{A})$. Theorem [Brandt, Terao 1994] If \mathcal{A} is free, then \mathcal{A} is \mathbf{k} -formal for all \mathbf{k} .

Main results in [MMR22]

Theorem

If \mathcal{A} is factored, then it is combinatorially formal.

Theorem

Formality is hereditary, i.e. if \mathcal{A} is formal, then \mathcal{A}^X is formal for any $X \in \mathcal{A}$ $L(\mathcal{A})$.

Theorem

For $k \geq 3$, the class of k-formal arrangements is not closed under taking restrictions.

Factoredness and formality

Theorem [Paris 1995] If \mathcal{A} is a factored arrangement in \mathbb{R}^3 , then $M(\mathcal{A} \otimes \mathbb{C})$ is a $K(\pi, 1)$ space.

Theorem [Amend, Möller, Röhrle 2018] The class of $K(\pi, 1)$ -arrangements is not closed under taking restrictions.

Formality [Falk and Randell 1987]

We use the equivalent reformulation by Brandt and Terao.

- Let \mathcal{A} be a hyperplane arrangement in $V \simeq \mathbb{K}^{\ell}$ with defining linear forms $\alpha_H \in V^*$ for $H \in \mathcal{A}$ such that $H = \ker(\alpha_H)$.
- $ullet F(\mathcal{A}):= \kerig(\oplus_{H\in\mathcal{A}} \mathbb{K} e_H o V^*, \ \ (a_H \mid H\in\mathcal{A}) \mapsto \sum a_H lpha_Hig)$ where $(e_H \mid H \in \mathcal{A})$ is the basis for the K-vector space indexed by the hyperplanes in $\boldsymbol{\mathcal{A}}$.
- For $X \in L(\mathcal{A})$ we have a natural inclusion $\bigoplus_{H \in \mathcal{A}_X} \mathbb{K}e_H \hookrightarrow \bigoplus_{H \in \mathcal{A}} \mathbb{K}e_H$ which induces an inclusion $i_X : F(\mathcal{A}_X) \hookrightarrow F(\mathcal{A})$.
- \mathcal{A} is called **formal** if $F(\mathcal{A}) = \sum_{X \in L_2(\mathcal{A})} i_X(F(\mathcal{A}_X))$, i.e. if $\pi_2 := \sum_{X \in L_2} i_X : \bigoplus_{X \in L_2} F(\mathcal{A}_X) \to F(\mathcal{A})$ is surjective.

Example – formality and non-formality

(1) Let $\mathcal{A} = \{H_1, \ldots, H_4\}$ be the arrangement with coefficients of its defining

- A subset $\mathcal{B} \subseteq \mathcal{A}$ is **line-closed** (in \mathcal{A}) if for all $H, H' \in \mathcal{B}$ we have $\mathcal{A}_{H\cap H'}\subseteq \mathcal{B}_{\cdot}$
- For $\mathcal{B} \subseteq \mathcal{A}$ define its **line-closure** $lc(\mathcal{B}) :=$ С. $\begin{array}{c} () \\ \mathcal{B} \subseteq \mathcal{C} \subseteq \mathcal{A}, \\ \mathcal{C} \text{ is line-closed in } \mathcal{A} \end{array} \end{array}$

Proposition [Falk 2002] If there is a subset of hyperplanes $\mathcal{B} \subseteq \mathcal{A}$ such that

- $|\mathcal{B}| = \mathrm{rk}(\mathcal{B}) = \mathrm{rk}(\mathcal{A})$ and
- $\operatorname{lc}(\mathcal{B}) = \mathcal{A},$

then $\boldsymbol{\mathcal{A}}$ is formal.

Key Idea

If \mathcal{A} has a factorization $\pi = (\pi_1, \ldots, \pi_s)$, then there exists a section $S = \{H_1, \ldots, H_s\} \subseteq \mathcal{A}$ of π , i.e. $H_i \in \pi_i$ and $\operatorname{codim}(H_1 \cap \ldots \cap H_s) = s \text{ such that } \operatorname{lc}(S) = \mathcal{A}.$

Example – factoredness and formality

• Consider $\mathcal{A} = \{H_1, \ldots, H_7\}$ in \mathbb{R}^3 with coefficient matrix

$$\begin{pmatrix} 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 & -1 & 1 \end{pmatrix}.$$

- linear forms given by the columns of $A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$. Then $\dim(F(\mathcal{A})) =$ $\dim(\ker(A)) = 1$ and $X = H_1 \cap H_2 \cap H_4 \in L_2(\mathcal{A})$ is the only nonsimple codim 2 intersection. Hence $F(\mathcal{A}) = F(\mathcal{A}_X)$ and \mathcal{A} is formal.
- (2) Consider $\mathcal{B} = \{H_1, \ldots, H_4\}$ with coefficient matrix $B = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$. Again $\dim(F(\mathcal{B})) = \dim(\ker(B)) = 1$ but all codim 2 intersections are simple, i.e. $|\mathcal{B}_X| = 2$ for all $X \in L_2(\mathcal{A})$. Hence $\dim(F(\mathcal{B}_X)) = 0$ for all $X \in L_2(\mathcal{B})$ and \mathcal{B} is not formal.

k-Formality [Brand and Terao 1994]

We can consider higher relation-spaces as follows:

- For $R_3(\mathcal{A}) := \ker(\pi_2)$ we again have natural induced inclusions $i_3(X): R_3(\mathcal{A}_X) \hookrightarrow R_3(\mathcal{A})$
- Define $\pi_3 := \sum_{X \in L_3} i_3(X) : \bigoplus_{X \in L_3} R_3(\mathcal{A}_X) \to R_3(\mathcal{A})$
- Call \mathcal{A} **3-formal** if \mathcal{A} is formal and π_3 is surjective.
- We can continue this way by recursively considering $R_k(\mathcal{A}) = \ker(\pi_{k-1})$ and defining $\pi_k : \bigoplus_{X \in L_k} R_k(\mathcal{A}_X) \to R_k(\mathcal{A})$.
- Call \mathcal{A} k-formal if \mathcal{A} is (k-1)-formal and π_k is surjective.

Factored arrangements

Let $\pi = (\pi_1, \ldots, \pi_s)$ be a partition of \mathcal{A} .

(a) π is called **independent**, provided for any choice $H_i \in \pi_i$ for

- $L_2(\mathcal{A}) = \{127, 135, 234, 146, 256,$ 457, 36, 37, 67}, where we write $i_1 \cdots i_k$ for $H_{i_1} \cap \ldots \cap H_{i_k}$
- \mathcal{A} factorization has a (π_1,π_2,π_3) π == $(\{H_7\}, \{H_1, H_2, H_3\}, \{H_4, H_5, H_6\}).$
- For the section $S' = \{H_7 \in \pi_1, H_3 \in \pi_2, H_6 \in \pi_3\}$ we only have lc(S') = S', i.e. S' is line-closed in A.
- But for $S = \{H_7 \in \pi_1, H_1 \in \pi_2, H_4 \in \pi_3\}$ we have $lc(S) = \mathcal{A}$.
- \mathcal{A} is also simplicial and by one of our results [MMR22, Prop. 2.8] the walls of every single chamber form an lc-basis, e.g. $\{H_3, H_4, H_6\}$.

Example -k-formality is not hereditary

The following example was found by means of a modified "greedy-algorithm" based on recent ideas presented by Cuntz.

- Consider the 5-arrangement $\mathcal{A} = \{H_1, \ldots, H_{11}\}$ in \mathbb{K}^5 with coefficient matrix
- One can check, that the underlying matroid of \mathcal{A} is *regular*, i.e. is realizable over any field \mathbb{K} .
- $\boldsymbol{\mathcal{A}}$ is \boldsymbol{k} -formal for all \boldsymbol{k} .

- $1 \leq i \leq s$, the resulting *s* hyperplanes are linearly independent, i.e. $\operatorname{codim}(H_1 \cap \ldots \cap H_s) = s$.
- (b) For $X \in L(\mathcal{A})$ let $\pi_X := (\pi_i \cap \mathcal{A}_X \mid \pi_i \cap \mathcal{A}_X \neq \varnothing)$ be the **induced partition** of \mathcal{A}_X .
- (c) π is a **factorization** of \mathcal{A} provided
 - (i) π is independent, and
 - (ii) for each $X \in L(\mathcal{A}) \setminus \{V\}$, the induced partition π_X admits a block which is a singleton.
- If \mathcal{A} admits a factorization, then we also say that \mathcal{A} is **factored**.

• Yet, the restriction \mathcal{A}^{H_2} in \mathbb{K}^4 with coefficient matrix $\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$ is

(2-)formal but not **3**-formal.

Questions

- Are factored arrangements k-formal for all k?
- Is k-formality (for $k \geq 3$) necessary for complex arrangements to have aspherical complements?

Main Reference

[MMR22] T. Möller, P. Mücksch, and G. Röhrle, On formality and combinatorial formality for hyperplane arrangements, arXiv:2202.09104 (2022) https://arxiv.org/abs/2202.09104

Contact Information

- Web: https://paulmuecksch.github.io/
- Email: muecksch.paul.892@m.kyushu-u.ac.jp