On formality and combinatorial formality

Paul Mücksch ${ }^{1}$
(joint work with Tilman Möller ${ }^{2}$ and Gerhard Röhrle ${ }^{2}$)
${ }^{1}$ Kyushu University, Fukuoka, Japan; ${ }^{2}$ Ruhr-University Bochum, Germany

Motivation

Theorem [Falk, Randell 1987]
If \mathcal{A} is a hyperplane arrangement in \mathbb{C}^{ℓ} with complement $\boldsymbol{M}(\mathcal{A})=\mathbb{C}^{\ell} \backslash \cup_{H \in \mathcal{A}} \boldsymbol{H}$ a $\boldsymbol{K}(\boldsymbol{\pi}, \mathbf{1})$ space, then \mathcal{A} is formal.
Theorem [Yuzvinsky 1993]
If \mathcal{A} is free, then \mathcal{A} is formal.
Remark: Yuzvinsky also demonstrated that formality is not combinatorial
i.e. in general it does not solely depend on the intersection lattice $\boldsymbol{L}(\mathcal{A})$.

Theorem [Brandt, Terao 1994]
If \mathcal{A} is free, then \mathcal{A} is \boldsymbol{k}-formal for all \boldsymbol{k}.
Theorem [Paris 1995]
If \mathcal{A} is a factored arrangement in \mathbb{R}^{3}, then $\boldsymbol{M}(\mathcal{A} \otimes \mathbb{C})$ is a $\boldsymbol{K}(\boldsymbol{\pi}, \mathbf{1})$ space
Theorem [Amend, Möller, Röhrle 2018]
The class of $\boldsymbol{K}(\boldsymbol{\pi}, \mathbf{1})$-arrangements is not closed under taking restrictions.

Formality [Falk and Randell 1987]

We use the equivalent reformulation by Brandt and Terao.

- Let \mathcal{A} be a hyperplane arrangement in $\boldsymbol{V} \simeq \mathbb{K}^{\ell}$ with defining linear forms $\boldsymbol{\alpha}_{\boldsymbol{H}} \in V^{*}$ for $\boldsymbol{H} \in \mathcal{A}$ such that $\boldsymbol{H}=\operatorname{ker}\left(\boldsymbol{\alpha}_{\boldsymbol{H}}\right)$
- $F(\mathcal{A}):=\operatorname{ker}\left(\oplus_{H \in \mathcal{A}} \mathbb{K} e_{H} \rightarrow V^{*}, \quad\left(a_{H} \mid H \in \mathcal{A}\right) \mapsto \sum a_{H} \alpha_{H}\right)$ where $\left(e_{\boldsymbol{H}} \mid \boldsymbol{H} \in \mathcal{A}\right)$ is the basis for the \mathbb{K}-vector space indexed by the hyperplanes in \mathcal{A}
- For $\boldsymbol{X} \in \boldsymbol{L}(\mathcal{A})$ we have a natural inclusion $\oplus_{\boldsymbol{H} \in \mathcal{A}_{\boldsymbol{X}}} \mathbb{K} \boldsymbol{e}_{\boldsymbol{H}} \hookrightarrow \oplus_{\boldsymbol{H} \in \mathcal{A}} \mathbb{K} \boldsymbol{e}_{\boldsymbol{H}}$ which induces an inclusion $\boldsymbol{i}_{\boldsymbol{X}}: \boldsymbol{F}\left(\mathcal{A}_{\boldsymbol{X}}\right) \hookrightarrow \boldsymbol{F}(\mathcal{A})$.
- \mathcal{A} is called formal if $\boldsymbol{F}(\mathcal{A})=\sum_{\boldsymbol{X} \in \boldsymbol{L}_{2}(\mathcal{A})} \boldsymbol{i}_{\boldsymbol{X}}\left(\boldsymbol{F}\left(\mathcal{A}_{\boldsymbol{X}}\right)\right.$), i.e. if $\pi_{2}:=\sum_{X \in L_{2}} i_{X}: \oplus_{X \in L_{2}} \boldsymbol{F}\left(\mathcal{A}_{X}\right) \rightarrow \boldsymbol{F}(\mathcal{A})$ is surjective

Example - formality and non-formality

(1) Let $\mathcal{A}=\left\{\boldsymbol{H}_{1}, \ldots, \boldsymbol{H}_{4}\right\}$ be the arrangement with coefficients of its defining linear forms given by the columns of $\boldsymbol{A}=\left(\begin{array}{cccc}1 & 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0\end{array}\right)$. Then $\operatorname{dim}(\boldsymbol{F}(\mathcal{A}))=$ $\operatorname{dim}(\operatorname{ker}(\boldsymbol{A}))=1$ and $\boldsymbol{X}=\boldsymbol{H}_{1} \cap \boldsymbol{H}_{2} \cap \boldsymbol{H}_{4} \in \boldsymbol{L}_{2}(\mathcal{A})$ is the only nonsimple $\operatorname{codim} \mathbf{2}$ intersection. Hence $\boldsymbol{F}(\mathcal{A})=\boldsymbol{F}\left(\mathcal{A}_{\boldsymbol{X}}\right)$ and \mathcal{A} is formal.
(2) Consider $\mathcal{B}=\left\{\boldsymbol{H}_{\mathbf{1}}, \ldots, \boldsymbol{H}_{4}\right\}$ with coefficient matrix $\boldsymbol{B}=\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)$. Again $\operatorname{dim}(\boldsymbol{F}(\mathcal{B}))=\operatorname{dim}(\operatorname{ker}(\boldsymbol{B}))=\mathbf{1}$ but all codim 2 intersections are simple, i.e. $\left|\mathcal{B}_{X}\right|=\mathbf{2}$ for all $\boldsymbol{X} \in \boldsymbol{L}_{2}(\mathcal{A})$. Hence $\operatorname{dim}\left(\boldsymbol{F}\left(\mathcal{B}_{X}\right)\right)=\mathbf{0}$ for all $\boldsymbol{X} \in \boldsymbol{L}_{2}(\mathcal{B})$ and \mathcal{B} is not formal.

k-Formality [Brand and Terao 1994]

We can consider higher relation-spaces as follows:

- For $\boldsymbol{R}_{3}(\mathcal{A}):=\operatorname{ker}\left(\boldsymbol{\pi}_{2}\right)$ we again have natural induced inclusions $i_{3}(X): R_{3}\left(\mathcal{A}_{X}\right) \hookrightarrow R_{3}(\mathcal{A})$
- Define $\pi_{3}:=\sum_{X \in L_{3}} i_{3}(X): \oplus_{X \in L_{3}} R_{3}\left(\mathcal{A}_{X}\right) \rightarrow R_{3}(\mathcal{A})$
- Call $\mathcal{A} 3$-formal if \mathcal{A} is formal and $\boldsymbol{\pi}_{3}$ is surjective.
- We can continue this way by recursively considering $\boldsymbol{R}_{\boldsymbol{k}}(\mathcal{A})=\boldsymbol{\operatorname { k e r }}\left(\boldsymbol{\pi}_{k-1}\right)$ and defining $\boldsymbol{\pi}_{k}: \oplus_{X \in L_{k}} \boldsymbol{R}_{k}\left(\mathcal{A}_{\boldsymbol{X}}\right) \rightarrow \boldsymbol{R}_{k}(\mathcal{A})$.
- Call $\mathcal{A} \boldsymbol{k}$-formal if \mathcal{A} is $(\boldsymbol{k}-\mathbf{1})$-formal and $\boldsymbol{\pi}_{\boldsymbol{k}}$ is surjective.

Factored arrangements

Let $\boldsymbol{\pi}=\left(\boldsymbol{\pi}_{1}, \ldots, \boldsymbol{\pi}_{s}\right)$ be a partition of \mathcal{A}.
(a) $\boldsymbol{\pi}$ is called independent, provided for any choice $\boldsymbol{H}_{\boldsymbol{i}} \in \boldsymbol{\pi}_{\boldsymbol{i}}$ for $\mathbf{1} \leq i \leq s$, the resulting s hyperplanes are linearly independent, i.e. $\operatorname{codim}\left(\overrightarrow{\boldsymbol{H}_{1}} \cap \ldots \cap H_{s}\right)=s$.
(b) For $\boldsymbol{X} \in \boldsymbol{L}(\mathcal{A})$ let $\boldsymbol{\pi}_{\boldsymbol{X}}:=\left(\boldsymbol{\pi}_{\boldsymbol{i}} \cap \mathcal{A}_{\boldsymbol{X}} \mid \boldsymbol{\pi}_{\boldsymbol{i}} \cap \mathcal{A}_{\boldsymbol{X}} \neq \varnothing\right)$ be the induced partition of $\mathcal{A}_{\boldsymbol{X}}$.
(c) $\boldsymbol{\pi}$ is a factorization of $\boldsymbol{\mathcal { A }}$ provided
(i) $\boldsymbol{\pi}$ is independent, and
(ii) for each $\boldsymbol{X} \in \boldsymbol{L}(\mathcal{A}) \backslash\{\boldsymbol{V}\}$, the induced partition $\boldsymbol{\pi}_{\boldsymbol{X}}$ admits a block which is a singleton.

If \mathcal{A} admits a factorization, then we also say that \mathcal{A} is factored.

Main results in [MMR22]

Theorem
If \mathcal{A} is factored, then it is combinatorially formal.
Theorem
Formality is hereditary, i.e. if \mathcal{A} is formal, then $\mathcal{A}^{\boldsymbol{X}}$ is formal for any $\boldsymbol{X} \in$ $L(\mathcal{A})$.
Theorem
For $\boldsymbol{k} \geq \mathbf{3}$, the class of \boldsymbol{k}-formal arrangements is not closed under taking restrictions.

Factoredness and formality

- A subset $\mathcal{B} \subseteq \mathcal{A}$ is line-closed (in \mathcal{A}) if for all $\boldsymbol{H}, \boldsymbol{H}^{\prime} \in \mathcal{B}$ we have $\mathcal{A}_{H \cap H^{\prime}} \subseteq \mathcal{B}$.
- For $\mathcal{B} \subseteq \mathcal{A}$ define its line-closure $\operatorname{lc}(\mathcal{B}):=$

$$
\underset{\mathcal{C} \text { is line closed in } \mathcal{A}}{\substack{\mathcal{C} \subseteq \mathcal{A}}} \mathcal{C} .
$$

Proposition [Falk 2002]

If there is a subset of hyperplanes $\mathcal{B} \subseteq \mathcal{A}$ such that
$-|\mathcal{B}|=\operatorname{rk}(\mathcal{B})=\operatorname{rk}(\mathcal{A})$ and
$\boldsymbol{\operatorname { l c }}(\mathcal{B})=\mathcal{A}$,
then \mathcal{A} is formal.
Key Idea
If \mathcal{A} has a factorization $\boldsymbol{\pi}=\left(\boldsymbol{\pi}_{1}, \ldots, \boldsymbol{\pi}_{s}\right)$, then there exists a section $\boldsymbol{S}=\left\{\boldsymbol{H}_{1}, \ldots, \boldsymbol{H}_{s}\right\} \subseteq \mathcal{A}$ of $\boldsymbol{\pi}$, i.e. $\boldsymbol{H}_{i} \in \boldsymbol{\pi}_{i}$ and $\operatorname{codim}\left(\boldsymbol{H}_{1} \cap \ldots \cap \boldsymbol{H}_{s}\right)=\boldsymbol{s}$ such that $\operatorname{lc}(\boldsymbol{S})=\mathcal{A}$.

Example - factoredness and formality

- Consider $\mathcal{A}=\left\{\boldsymbol{H}_{1}, \ldots, \boldsymbol{H}_{7}\right\}$ in \mathbb{R}^{3} with coefficient matrix

$\left(\begin{array}{rrrrrrr}0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 & -1 & 1\end{array}\right)$.

- $L_{2}(\mathcal{A})=\{127,135,234,146,256$, $457,36,37,67\}$, where we write $\boldsymbol{i}_{1} \cdots \boldsymbol{i}_{\boldsymbol{k}}$ for $\boldsymbol{H}_{\boldsymbol{i}_{1}} \cap \ldots \cap \boldsymbol{H}_{\boldsymbol{i}_{\boldsymbol{k}}}$
- \mathcal{A} has a factorization $\pi=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)=$ $\left(\left\{H_{7}\right\},\left\{H_{1}, H_{2}, H_{3}\right\},\left\{H_{4}, H_{5}, H_{6}\right\}\right)$

- For the section $\boldsymbol{S}^{\prime}=\left\{\boldsymbol{H}_{7} \in \boldsymbol{\pi}_{1}, \boldsymbol{H}_{3} \in \boldsymbol{\pi}_{2}, \boldsymbol{H}_{\mathbf{6}} \in \boldsymbol{\pi}_{3}\right\}$ we only have $\operatorname{lc}\left(\boldsymbol{S}^{\prime}\right)=\boldsymbol{S}^{\prime}$, i.e. \boldsymbol{S}^{\prime} is line-closed in \mathcal{A}.
- But for $\boldsymbol{S}=\left\{\boldsymbol{H}_{7} \in \boldsymbol{\pi}_{1}, \boldsymbol{H}_{1} \in \boldsymbol{\pi}_{2}, \boldsymbol{H}_{4} \in \boldsymbol{\pi}_{3}\right\}$ we have $\operatorname{lc}(\boldsymbol{S})=\mathcal{A}$.
- \mathcal{A} is also simplicial and by one of our results [MMR22, Prop. 2.8] the walls of every single chamber form an lc-basis, e.g. $\left\{\boldsymbol{H}_{3}, \boldsymbol{H}_{4}, \boldsymbol{H}_{6}\right\}$.

Example - k-formality is not hereditary

The following example was found by means of a modified "greedy-algorithm" based on recent ideas presented by Cuntz

- Consider the $\mathbf{5}$-arrangement $\mathcal{A}=\left\{\boldsymbol{H}_{\mathbf{1}}, \ldots, \boldsymbol{H}_{\mathbf{1 1}}\right\}$ in $\mathbb{K}^{\mathbf{5}}$ with coefficient

- One can check, that the underlying matroid of \mathcal{A} is regular, i.e. is realizable over any field \mathbb{K}.
- \mathcal{A} is \boldsymbol{k}-formal for all \boldsymbol{k}.
 (2-)formal but not $\mathbf{3}$-formal.

Questions

- Are factored arrangements \boldsymbol{k}-formal for all \boldsymbol{k} ?
- Is \boldsymbol{k}-formality (for $\boldsymbol{k} \geq \mathbf{3}$) necessary for complex arrangements to have aspherical complements?

Main Reference

[MMR22] T. Möller, P. Mücksch, and G. Röhrle, On formality and combinatorial formality for hyperplane arrangements, arXiv:2202.09104 (2022) https://arxiv.org/abs/2202.09104

Contact Information

- Web: https://paulmuecksch.github.io/
- Email: muecksch.paul.892@m.kyushu-u.ac.jp

